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INTRODUCTION

Under the sponsorship of the Naval Sea Systems Command, the Civil
Engineering Laboratory (CEL) has been engaged in the development of an
experimental diver heater. The project objective is to develop a
compact, portable, self-contained energy source capable of supplying
heated water to a closed-loop circulation garment worn by the diver.
Circulation garments and associated thermal protection gear are under
development at the Naval Coastal Systems Laboratory (NCSL), Panama City,
Florida. Basic requirements for the heater include operation in 28°F
(- -2° C) seawater at depths of 1,000 feet (305 m) for up to 8 hours without
replenishment. Experimental models of 8- and 16-kWh (28.8- and 57.6-MJ)
capacity were developed and laboratory tested. In addition the 8-kWh
(28.8-MJ) unit was successfully diver-tested, proving the feasibility of
the magnesium/seawater heat source.

BACKGROUND

Divers exposed to cold water for extended periods of time require
thermal protection equipment to maintain acceptable physiological
conditions and operational effectiveness. The overall heating problem
is that of maintaining the diver’s normal thermal balance. The amount
of heat required varies with environmental factors, such as water
depth, breathing gas type, water temperature, and duration of exposure,
and with individual factors, such as physical condition, metabolic rate,
and activity level. Thermal balance can be expressed by the simplified
equation:

Heat Replacement = Respiratory heat loss + diving suit loss
- metabolic heat generated

Respiratory losses are due to involuntary heating of inspired gas to

body temperature prior to expiration. The amount can be up to about 500
watts [1] depending upon the specific heat, density, volume, and tempera-
ture of the inspired gas. Diving suit losses vary with depth, type of
suit, suit material, and water temperature. The values range from 3, 000
watts for the standard 3/8-inch (9.5-mm) thick neoprene wet suit [19 ft2
(1. 7Sm2) surface area] at 1, OOO-foot (305-m) depth with a skin-to-seawater
temperature difference of 50 F (28 C), to 1,000 watts for a dry suit




filled with helium under the same conditions [2].* The metabolic heat
generated varies with individual activity level and physical condition
and ranges from near zero for inactive divers to as much as 500 watts
for sustained heavy work periods. To insure adequate heat would be
available to maintain thermal balance under extreme conditions, an
initial program goal of 2,000 watts was selected as the heater output.

Heating is required both for tethered and self-contained divers.
The present method for heating the tethered diver is to supply hot water
via an umbilical hose from the support platform (surface ship, PTC,
etc). The hot water is flushed over the diver’s body under his diving
suit and then exhausted directly to the surrounding environment. In
this case, the physical size and weight of the heat source is not
critical, since it is not carried by the diver. However, because of
both the high heat losses in hoses and the open-circuit design, the
system is grossly inefficient. In addition, the hot water umbilical
greatly restricts the diver’s mobility.

For the free-swimming diver, thermal protection is not easily
provided. Since the heat source must be carried on his person, it must
be lightweight and compact and not impair his mobility. 1In addition it
must be simple, safe, and reliable.

In the past, several methods of providing heat for free-swimming
divers have been investigated [3-11]. The resulting systems have
exhibited several disadvantages: batteries are heavy, bulky, expensive,
and short-lived; nuclear sources can be used by the diver only for short
durations because of radiation exposure, and the radiation shielding and
thermal safety devices make the nuclear heater bulky and complicated;
and most thermochemical heat sources employ exotic reactants and involve
high operating temperatures and complicated control systems.

A compact, lightweight, high-energy density, easily controlled,
reliable, safe heat source that can be integrated with closed=-circuit
hot water suits is vitally needed. To this end, CEL has been investi-
gating the development of a heater that utilizes the reaction of a
magnesium alloy with seawater to produce heat.

HEAT SOURCE DEVELOPMENT
Background
The oxidation reaction of magnesium was chosen for the heat source,

because it is simple, reliable, compact, and inexpensive, and has a
comparatively high-energy density. A comparison of the CEL-developed

*

Ongoing research being conducted at NCSL in thermal
protection suits is expected to produce significant
improvements in this area.
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heat source with other candidates is shown in Table 1.
Magnesium reacts with seawater according to Equation 1:

Mg + 2H,0 > Mg(OH), + H, (gas) + 4h N

2
where Ah is the heat of formation of the reaction.

The theoretical energy density of this reaction is 1,885 W-hr/lb of
magnesium (14.9 MJ/kg). The reaction ordinarily proceeds slowly in
seawater, and heat is not released at a usable rate. But, by electrically
connecting the magnesium to a cathodic material, such as iron (forming
a galvanic couple), the reaction proceeds much more rapidly and liberates
heat at a usable rate. Similar systems have been developed as seawater
batteries.

The CEL heater uses the same basic principle as the seawater
battery, but the battery’s external load is replaced by a short circuit
to maximize the reaction rate. A simplified schematic model of the
reaction process is shown in Figure 1. Major steps of the process are:

1. Current flows from anode to cathode via the short circuit
because of the potential difference.

2. Water is reduced at the cathode.

3. Magnesium ions are formed at the anode.

4, Hydroxide and magnesium ions migrate to a point where they
combine to form magnesium hydroxide.

Chemical energy is converted into thermal energy by means of a
highly efficient electrochemical reaction. The energy given off by this
reaction heats the surrounding electrolyte. A more detailed discussion
of the reaction process is contained in Reference 12.

The basic heat-producing element of the electrochemical reaction is
the dual-plate cell shown in Figure 2. The spacer washer provides both
an electrode gap and a short circuit current path. The electrode gap
provides for free passage of the electrolyte and removal of the reaction
products [Hy and Mg(OH)3]. As the magnesium is reacted, the anode
becomes thinner and the electrode gap increases.

It is important for the spacer washer to provide a very low resis-
tance path (less than 103 ohms) for current flow. With a high resis-
tance path, part of the energy goes into inefficient electrical Joule
heating, and the reaction rate* is reduced to unusable values in terms
of diver heating.

* .
Reaction rate is defined as power output per unit-
surface-area of anode.




Experimental Arrangement

Early experimental work showed that the reaction rate of the dual-
plate cell is a function of several interdependent parameters. The most
important of these parameters are electrolyte temperature, electrode
gap, and electrolyte condition. In an attempt to isolate and understand
the effects of these and other parameters, a number of laboratory experi-~
ments were conducted.

Three different configurations were utilized in the laboratory
experimentation, Quantitative data on reaction parameters were obtained
using an insulated Dewar flask (Figure 3) that was accurately calibrated
for heat loss. The test cells consisted of three magnesium and four
iron plates of up to 72 in.2 (465 cmz) of anode surface area. A pump
was provided to test thLe effects of electrolyte circulation on cell
performance. The temperature rise of the electrolyte was recorded on a
multipoint recorder.

Uninsulated glass beakers were used for tests in which only
qualitative results were needed. The results were obtained by visually
inspecting the anodes and by monitoring temperature differences between
several cells running simultaneously in different beakers. 2

A third apparatus was used for testing cells of up to 1,000 in.
(0.645 m2) of anode surface area (Figure 4). The cell and electrolyte
were contained in an insulated acrylic case with a removable top.
Thermocouples were provided for monitoring the temperature of the
circulating electrolyte. A second fluid was circulated through a copper
tube heat exchanger immersed in the cell electrolyte and through external
cooling coils. In this manner the electrolyte could be maintained at a
constant temperature. Temperature change and flow rate of the second
fluid were used to determine power output. An additional method was
provided for adding controlled amounts of fresh seawater the reaction
chamber.

Dual-Plate Cell

The dual-plate cell consists of separate anode and cathode plates
arranged as shown in Figure 5. Over 70 tests were run in the Dewar to
determine the effect of the various parameters on cell performance. The
major objectives were to determine the effects of electrode gap and
electrolyte temperature on reaction rate and reaction efficiency.* The
initial gap, which was set prior to the start of each test, ranged from
0.060 (0.15 cm) to 0.200 (0.5 cm) inch. At each spacing the temperature
was allowed to rise 60°F (300C). Starting temperatures varied from 30°F
(=1°¢) to 150°F (65°C) in 20°F (11°C) increments.

*
Reaction efficiency: ratio of actual energy output
to theoretical energy output.




The relationship between energy density (W-hr per pound of
magnesium), temperature, and spacing is shown in Figure 6. Energy
density is shown to be a strong function of temperture and a relatively
weak function of plate spacing. Based on theory it was expected that
energy density would increase with temperature. The experimental
results, however, show a marked decrease at the higher temperatures.
This effect at the high reaction rates is caused by unused magnesium
sloughing from the plates., The sloughed magnesium can be seen as small,
dark-colored particles circulating in the electrolyte. Figure 6 shows
that an energy-efficient reaction rate occurs between 100°F and 150°F
(38° and 66°C).

The effects of plate spacing and temperature on power density are
shown in Figure 7. As expected, the reaction rate proceeds more rapidly
at higher temperatures and closer spacings.

The electrolyte condition is described in terms of pH, salinity,
and density. Theory predicts that the reaction rate is reduced by high
PH, low salinity, and increased density (resulting from reaction products
mixing with the seawater electrolyte). To some extent the electrolyte
density and pH can be controlled. But, in general, the heater must be
designed to accommodate the natural variability of the seawater enviro-
ment.

The pH, salinity, and conductivity of the electrolyte were measured
to determine quantitatively how these parameters affected cell perfor-
mance, For these parametric tests, the pH changed relatively little,
because the comparatively large volume of seawater diluted the reaction
product concentration. In addition, since seawater is a very good
buffer, large quantities of Mg(OH); would be required to make significant
pH changes. Generally speaking, the reaction rate was aff.cted as
expected. Table 2 summarizes the effects of these and other parameters
on cell performance, but no quantitative trends were identified.

Reaction Rate Decay Characteristics. To verify the results of the
parametric tests, a series of large-scale tests were run in the acrylic
vessel. 1In these tests fresh electrolyte was added at a controlled rate
(125 ml/min), and an equal volume of slurry [Mg(OH); and water] was
removed to maintain constant electrolyte pH and density. The results
of a typical test are shown in Figure 8. The broken line shows the esti-
mated decay in cell power as predicted from parametric tests and based
on anode consumption and increasing electrode gap. These results ver-
ified the fact that reaction is strongly dependent on electrode gap.

The power output during the first hour was significantly higher
than predicted. The increase is attributed to several factors: clean
anodes and low electolyte pH and density. Initially, the anodes are
clean and free from reaction products, but during the first hour, magne-
sium hydroxide accumulates on the anode surface. These deposits inhibit
the reaction process at the anode and subsequently reduce the overall
reaction rate. Also, fresh seawater, which is a very good buffer, has a




relatively low pH and is very fluid. However, as the reaction products
accumulate, both the pH and density increase so that, by the end of the
first hour, stabilized values have been established based on the slurry
removal and electrolyte addition rate. Although the full effect of these
parameters is not understood, it is known that a high pH and a thick
slurry can block the anodic reaction thereby reducing the reaction rate.

These factors appear to account for a large portion of the initially
high reaction rate, but they are augmented by the anode edge reaction.
New plates have a substantial edge area that is not normally used in
power calculations. However, this area apparently contributes to the
initial reaction rate (dotted line). As the reaction proceeds, the edge
area diminishes; in fact, the plate dimensions are reduced as shown in
Figure 9.

As would be expected, the high initial reaction rate from the above
factors results in rapid magnesium comsumption during the first hour.
The rate of consumption decays rapidly until an electrolyte equilibrium
condition is attained. At this point (1-1/2 to 2 hours into the test)
the consumption rate is governed primarily by electrode gap, which is
evidenced by the similar slopes of the dashed and solid lines during the
remaining test hours (Figure 8). Because of the high initial reaction
and early electrode gap increases, the reaction rate is lower than pre-
dicted from the parametric tests during the later hours of the test.

In accordance with the decaying power curve, a cell that delivers
the desired power at the end of its operating period, delivers excess
power initially. A number of tests were conducted to determine if the
high initial and resultant low final rates could be better balanced to
provide a flatter power curve; these tests are summarized in Table 3.
The most effective modification was to alter the anode dimensions to
reduce or eliminate the edge effect. This was accomplished by fabrica-
ting anodes of slightly larger dimensions than the cathode. Thus, the
edge was located far enough away from the cathode to significantly
reduce the edge effect. The modification was used on all subsequent
dual-plate cell construction,

Other Parameters Affecting Reaction Rate. Variations in the cathode
thickness and surface condition and in the electrolyte salinity affect
the reaction rate. Thick cathodes have the lowest electrical resistance
and produce the highest reaction rates (Figure 10). However, cathodes
thicker than 0.060 inch (0.15 cm) do not noticeably improve cell perfor-
mance. On the other hand, thin cathodes [0.001 in. (0.003 cm)] are
desirable because they minimize weight, but they .iso warp, and, con-
sequently, the electrode gap cannot be reliably maintained. A cathode
thickness of 0.010 inch (0.03 cm) was selected as a compromise between
minimum weight, reasonable structural strength, and power output.

It was discovered that the output of a cell with 0.010-inch thick
cathodes could be increased by as much as 30% by sandblasting the cathode
surface (Figure 11). The rough surface greatly increases the number of
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sites available for hydrogen gas bubble nucleation. Other techniques
for increasing the cathode surface area, such as scratching or sanding,
produce similar, but less dramatic, effects.

Electrolyte salinity has a pronounced effect on the reaction rate.
Figure 12 shows seawater (34 o/oo salinity) as a standard; however, salt-
saturated seawater will produce a much higher reaction rate. This high
rate will continue for only a sihort time (about 1 hour), because the
reaction preduct, a jelly-like substance, will increase the electrolyte
density and thereby reduce the reaction rate to an unusable level.

Very few ions are present in an extremely low salinity electrolyte;
therefore, the reaction rate of the cell will be negligible in terms of
heat production. In general, the salinity and buffering quality of
seawater combine to create the highest long-term reaction rate possible.

The thickness and surface condition of the cathode can easily be
controlled to provide the desired power output. In general, the cell is
subject to operation within the normal local salinity range. However,
where required, rapid heat-up can be achieved by ¢‘spiking®” the initial
charge of seawater with salt. Normal electrolyte/seawater exchange will
flush the jelly-like products from the cell chamber, reduce the salinity,
and return the cell to the normal power level.

3

Reaction Control., The development of a reliable and simple control
system for maintaining a constant power output was explored to reduce
the size and weight of the cell to less than that of the fixed-plate
cell. Table 4 summarizes the results of these investigations. The most
promising mwethod appears to be of the inert cone spacer (Figure 13),
which uses the reaction itself to control spacing. As of now, a simpli-
fied method for assembling these cells and also providing the short
circuit has not been developed. There are two major problems in each of
the control techniques. First, cell construction becomes too compli-
cated, and, second, the weight and volume of a cell plus control system
exceed those of a cell designed to provide the same delivered final
power without control.

A variety of other tests were performed in attempts to control or
modify the reaction rate. These tests are summarized in Table 4.

None of the test results showed improvements significant enough to cause
modification of the basic dual-plate cell configuration.

Bi=Polar Electrode

One of the disadvantages of the dual-plate cell is holes start to
form in the anode during the last hour of the reaction. The holes
decrease the current-carrying cross section of the anode and reduce the
active anode area. The result is reduced cell power. To minimize these
effects in the dual-plate cell the anodes must be slightly thicker than
actually needed. This insures enough active surface area will remain to
provide the required power for the desired duration.




T T e el el e T

Another possible technique for avoiding this problem is to electro-
plate the cathodic material to one side of the anode. Thus, c¢ell con-
struction would be simplified by eliminating the need for a separate
iron cathode. Also, cathodic and anodic currents would be shared. With
this technique, as the anode thickness decreases, a constant thickness
cathode remains to conduct a portion of the anodic current. An addi-
tional benefit is that the anode provides some structural strength to
the cathode so that thinner cathodes could be used.

A 1,000-watt version of this cell was constructed and tested. The
electroplating consisted of iron deposited onto a copper substrate that
was plated onto one side of the magnesium. During the plating process,
higher than normal plating currents were used to achieve the greatest
possible cathode surface area (similar to sandblasted iron).

The cell produced approximately 207 more power than a comparable-
area dual-plate cell (see Figure 11). This increase was probably due to
(1) the measures taken to increase the surface area and (2) the low
resistance electrical current path provided by the copper substrate.

To better understand the bi-polar electrode reaction, a single
bi-polar electrode was placed in seawater. There was very little self-
reaction, and it ocurred only near the edges of the electrode. This
self-reaction rate was low because the current paths through the electro-
lyte were too long except at the edge; there the anode-cathode separation
was only about 1/16 inch (0.16 cm) (approximately the electrode
thickness).

Powdered Metal Cell

A preliminary investigation of magnesium and iron powder mixtures
as possible heat sources is described in Reference 12. The tests
included loose mixtures of size-graded magnesium and iron particles as
well as mixtures of particles that had been mechanically bonded together
by ball—milling* to produce microgalvanic cells. The results show that
ball-milled mixtures produce the highest reaction rates and that the
reaction is strongly influenced by particle size (area exposed to the
electrolyte).

Further tests were conducted to develop a heat source with a greater
specific output (W-hr/lb of cell) than the dual-plate cell [approximately
800 W-hr/1b of cell (6.3 MJ/kg)]. A means of controlling the heat
output was also sought.

Small-scale tests were run to determine the best cathodic material
for sustaining the reaction and the minimum percentage necessary to
produce heat at a usable rate. The test results were compared by the
rate of hydrogen evolution (directly related to power output) from five

* . . . : .
Ball-milling produces intimate contact between the particles,




gram samples of the candidate mixtures (Table 5). Mixtures of 10% by
weight of copper or iron with magnesium gave the best combination of
rate and efficiency at reasonable cost. Although the reaction rates of
the magnesium-copper couple were higher, the magnesium=iron reacted at
a more consistent rate over an extended period. As a result, the
magnesium=-iron couple was selected for larger scale tests.

The previous investigations addressed the power output control
question by adding small amounts of seawater to the dry powder mixtures.
When sufficient amounts of seawater were added to wet the entire powder
volume, maximum power output was achieved; however, further additions of
seawater had no appreciable effect. For the large-scale tests, control
was attempted by metering the powder mixture into a chamber filled with
seawater. The feasibility of controlling the reaction in this manner
was proved; however, difficulty was encountered in adding the drv powder
to the electrolyte.

To facilitate the addition of the reactants to the electrolyte, an
effort was made to develop an inert slurry with the powder. A mixture
of 507 morpheline and 507 powder formed a fairly stable slurry for
pumping. However, the powder tended to settle out of the mixture, and
the slurry was not completely inert; therefore, some reaction occurred
within the slurry. A second slurry was prepared that resembled tooth-
paste in consistency. This gel was completely stable and did not react
with the powder. Its composition was:

Eggftituent Proportion (by weight)
Magnesium=~iron powder. . . . . . ., . . . . 447.0
carbowax ®MPEG. . . . . . ... ... .. 3%.0
Armeen®Z. c e e e e e e e e e e e s #<19,7
cab-0-si1®. . . .. ... L L ... 3.0
Diethylenetriamine (DETA) . . . . . . . . . 1.0

The slurry was added to the reaction chamber with a caulking gun.
The large-scale tests showed that the slurry could be easily added to
the seawater, but that continued stirring was necessary to keep the
reaction at a constant rate. The slurrying agents were found to have no
detrim:ntal effect on the reaction, A specific output of approximately
500 W-hr/1b of reactant (3.95 MJ/kg) was achieved with the powdered i
metal reaction. With further development the specific output might be
competitive with the duvual-plate-type cell.

The most important result of the powdered metal tests is that an
inert slurry has been developed. 1In slurry form, the powdered reactants
can be supplied on a demand basis, By varying the slurry addition rate
to a reaction chamber, power can be controlled.
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Alloy Powder Tests

Although the powdered metal tests proved successful, the specific
output was not as high as had been anticipated by having the anodi: and
cathodic materials in such close contact. Evidently, surface oxides on
the metal (present during ball milling) acted as high resistance
electrical barriers to the current flow.

To verify this theory, a magnesium=iron alloy was conceived in
which intimate physical and electrical contact could be established
between anode and cathode. Through conventional alloying only a very
small percentage of iron (<<1% by weight) can be dissolved. This is
much less than the 10% that proved optimum for the previous powdered
metal tests. A process of mechanically alloying otherwise immiscible
metals [13,14] has been established. 1In this process, magnesium and
iron powders are milled in a high energy ball mill. The powder particles
are cold-welded together as the balls in the mill collide. Repeated
collisions cause particle fracturing and rewelding, and, eventually, a
uniform alloy powder is formed.

Alloy samples were prepared and tested. Powder particle sizes were
in two ranges: °‘‘as-produced’’ (larger than 100 mesh) and ‘‘selected’’
(smaller than 100 mesh). The initial tests showed that the as-produced
samples reacted more effectively. An alloy particle would generate a
gas bubble, rise to the water surface, release the bubble, and sink. On
the other hand, the selected (finer) powder would not release its gas
bubble. This resulted in a foam surface that actually lifted the powder
particles out of the seawater and prevented them from reacting to comple-
tion. Thus, the remaining tests were conducted with the ¢‘as=-produced’’
particle size.

Figure 14 shows the relationship of milling time to reaction
efficiency. A maximum reaction efficiency of approximately 90% is
approached asymptotically as shown in Figure l4a. Figure 14b shows the
30-minute milled alloy achieves almost this 90% completion in 1 minute.
For additional tests the 30-minute milling time was used as the standard.
(The rapid reaction completion time is desirable for using the alloy as
a fuel.)

Initial alloy compositions were held constant at 5 atomic percent to
show the effects of particle size and milling time. Another group of
alloys of various iron percentages was tested to develop a family of
curves that relate reaction efficiency and power output to alloy composi-
tion. These data are shown in Figures 15 and 16. The zero=-percent ball~
milled magnesium powder was tried to see if sufficient strain energy was
stored in the particles to cause stress corrosion. As can be seen in
Figure 15, some small amount of iron is required to produce a usable
reaction. Alloys of several alternate cathodic materials were tested to

see what reactions they would produce. These results are shown in

10
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Figures 17 and 18. Nickel produced the only reaction that was competi-
tive with iron. For other applications the data presented may aid in
selecting an initial trial alloy composition.

Mechanically alloyed magnesium powders are well suited for a heater
designed to deliver variable or constant power. At a reaction tempera-
ture of 140°F (60 C), approximately 0.01 pound (5 grams) of alloy (10%
iron by weight) will produce 1,000 watts for 1 minute and will be 90%
reacted. A possible configuration for a powder alloy heater is shown in
Figure 19; its control circuitry is shown in Figure 20. The rapid and
efficient reaction characteristics allow the powder to be fed continu-
ously into the reaction tube with the assurance that only a small
fraction of the available energy will be ejected from the tube as unre-
acted powder.

An estimate of energy density is 800 to 900 W-hr/1lb of slurry (6.3
to 7.1 MJ/kg) compared with 500 W~hr/1b of slurry (3.95 MJ/kg) for the
previous powdered metal tests. Thus, a highly efficient, variable
power heater is conceivable using powdered magnesium alloy as an
energy source.

Summary of Experimental Investigation

The experimental work demonstrated that the dual-plate cell could
provide adequate power for the worst case (2,000-watt) diver application.
The cell reaction rate was found to be a function of both electrode gap
and electrolyte temperature. Other factors, such as electrolyte condi- i
tion and circulation, affect cell operation to a much lesser degree.
The most important factor that controls the overall cell effectiveness/ 1
performance is the power decay resulting from anode depletion (increas-
ing electrode gap). Attempts to provide direct control to minimize this
effect showed that inert cone spacers would be the best approach. A
simple means for implementing the cone spacers while providing adequate
anode/cathode flexible current paths is yet to be devised.

The bi-polar electrode cell offers simpler and more efficient
construction than the dual-plate cell, but present anticipated cost of
cell fabrication is excessive.

The powdered metal cell offers the advantage of controllable power
output and, consequently, more efficient use of the magnesium. In the
past, the disadvantage has been that the specific output was lower than
the dual-plate cell. The magnesium~iron alloy (MagIron) powder appears
to have a specific output competitive with the dual-plate cell because
of a much lower electrical resistance. Further improvements in slur-
rying may increase the proportion of active to inert ingredients, thus
increasing specific output, In such a case, the powdered alloy may
prove to be superior to the dual-plate cell.

The characteristics of the three cell types are summarized in
Table 6.
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EXPERIMENTAL HEATER DEVELOPMENT

To demonstrate the feasibility of using the magnesium-iron couple
as a self-contained heat source, two experimental heater models were
developed. A 16-kW-hr model (Figure 21) was designed to provide 2,000
watts for 8 hours. The second unit, an 8-kW-hr model (Figure 22),
was designed to provide 1,000 watts also for 8 hours. The discussion
below refers in detail only to the 8-kW-hr heater, since it was developed
last and incorporates improvements over the 16-kW-hr heater. However,
important differences between them are discussed.

Operation ]

The magnesium=iron dual-plate cell is contained in the insulated
case shown schematically in Figure 23. The heater is activated by
flooding the case with seawater. Heat, hydrogen gas, and magnesium
hydroxide are produced by the reaction. A heat exchanger immersed in
the electrolyte transfers the generated heat to a second fluid that is
circulated to the diver. Hydrogen gas is continuously vented through a
valve that maintains a small overpressure within the case. This pres~
sure drives a small amount of the slurry out through an economizer heat
exchanger. Fresh seawater is pumped counterflow through the economizer
to recover the heat from expelled hot slurry. The slurry and seawater
exchange maintains the electrolyte pH and density relatively constant.

Heater Case

The heater case provides thermal insulation, neutral buoyancy,
and protection for the heater components. It is constructed of syntac-
tic foam sandwiched between inner and outer fiberglass shells. The foam
provides buoyancy and thermal insulation, while the fiberglass provides
mechanical strength. Overall wall thickness for the case is 5/8 inch
on two sides and top and 3/4 inch on tge twooremaining sides. Heat
loss through the case walls with a 106 F (59 C) temperature differential
was found to be approximately 90 watts.

The case is built in two separate sections (Figure 22), The upper
case contains the heat source, electrolyte, electrolyte/suit-water heat
exchanger, hydrogen vent valves, and an economizer heat exchanger. The
lower case houses the pumps, motors, monitoring electronics, and inter-
connecting plumbing. The upper case is sealed, while the lower case is ]
free-flooding.

The seal between the upper case and the environment is an O-ring ;
placed against a flat rubber gasket. Sealing pressure is provided by 1
six plastic cam latches., The overall outer dimensions for the 8-kW-hr
case are 8 x 8=1/2 x 14+-1/2 inches (20 < 22 x 37 cm). The case weighs
11 pounds (5 kg). The 16-kW-hr heater measures 7-1/4 x 7=-1/2 x 21-3/4
inches (18 x 19 x 55 cm).




Heat Production System

The heat source, which weighs 10 pounds (4.5 kg), consists of a
series of cells (Figure 2) bolted (shorted) together. Twenty magnesium
anodes 5-7/8 x 7-3/8 x 1/8 inch thick (14.9 x 18.7 x 0.32 cm) and 21
steel cathodes 0.010 inch (0.026 cm) thick are spaced at an electrode
gap of 0.060 inch (0.152 cm). The electrode gap is fixed by copper
spacer washers that also serve as electrical current paths between
adjacent electrodes. Copper washers are used to minimize local reaction
on the anode.*

o Withothe above cell construction the starting power density in
140°F (60°C) electrolyte is approximately 1 W/in.4 of magnesium surface
area (0.155 w/cmz), which gives a total initial power for this cell of
1,800 watts. At the end of 8 hours, the power density decays to about
0.6 W/in.2 (0.093 W/cm?), which provides the required 1,000 watts. The
decay is primarily due to increased electrode gap resulting from anode
consumption,

An important part of the heat production system is maintenance of
the electrolyte and disposal of reaction products. Hydrogen must be
continuously vented to prevent overpressurizing of the case. The
hydrogen vent system is designed to provide an electrolyte overpressure
of 1 psi (6.9 kPa) that is used to expel the spent electrolyte slurry at
a rate of 0.026 gal/min (100 ml/min) through the economizer. Since the
diver’s orientation is constantly changing, the gas vents must be located
on all corners of the case. In this model, the hydrogen vents are
relief valves that are set at 1 psi (6.9 kPa) over ambient and are
equipped with neutrally buoyant rubber flapper valves (Figure 24). In
the presence of hydrogen, the flappers open, which allows the gas to
escape through the relief valve. With water present, the flappers close
to prevent hot electrolyte from being expelled to the environment.

A hydrogen-permeable membrane was explored for ventilating the
hydrogen., Nonwettable porous Teflons and other synthetic materials were
tested. The porous Teflon adequately vented the hydrogen with the
required overpressure in clean seawater, but it was subject to pore
clogging in the presence of magnesium hydroxide. Further investigation
is necessary to find a noncloggable hydrogen-permeable membrane.

The economizer heat exchanger (Figure 25) is mounted within the two
thick sides of the heater case. The seawater/magnesium hydroxide
slurry passes through the copper tubing. The 0.18-inch (0.46=cm)
inside diameter and the 17-foot (5.2-in.) length of the tubing were
sized to provide a continuous discharge of 9.5 cu in./min [(150 ml/min)

*
Local reaction around similar steel washers causes the
anodes to prematurely corrode through, which separates
the main portion of the anode from the short circuit
paths.
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at the 1-psi (6.9-kPa) hydrogen overpressure. Fresh seawater is pumped,
counter flow, through milled channels surrounding the copper tubing.

The rate is slightly greater than the slurry expulsion rate to provide
for water consumed by the reaction. The entering fresh seawater is
preheated by the expelled slurry. Tests of the economizer showed it to
be approximately 75% effective in recovering heat from the spent elec-
trolyte.

Heat Circulation System

Heat is distributed to the diver by means of a second fluid (sea-
water) that is circulated through a heat distribution garment surround-
ing his body. A schematic of the system is shown in Figure 23. The
pump circulates water at a rate of 0.6 gal/min (2.27 2/min) through the
semi~closed circuit loop. As this fluid passes through the electrolyte-~
immgrsed geat exchanger, its temperature is raised to approximately
115°F (46°C). A piston-type thermostatic actuator, which is mounted in
the temperature control valve (Figure 26), senses the temperature of the
water delivered from the heat exchanger. Theopositgon of the thermostat
is set so that if the temperature exceeds 110 F (43 °C), the piston will
open a thrce¢tling valve that will allow the hot water to escape to the
sea.

An equal volume of cold seawater is automatically taken in through
the always-open suction port at the pump. The cold water mixes with the
warm water returned from the diver before entering the heat exchanger,
and lowers the temperature of the water delivered to the diver. A
handle on the valve allows the diver to adjust the set point position of
the thermostat. With this handle the diver suit water inlet temperature
is adjustable for comfort control. By opening the valve, the diver can
bypass some or all of the heated water and circulate cool water through
the suit. The high temperature set point can be adjusted to a maximum
of 110°F (43°C).

System Components

The pumps for circulating the diver suit water and fresh electrolyte
are shown in Figure 27, The permanent magnet DC motors are housed in
watertight pressure vessels. To avoid the need for shaft seals, mag-
netic couplings are used to drive the centrifugal pump impellers.

The pumps are activated by an electronic control panel (Figure 27)
that also monitors the system. The control panel contains three sets
of LEDs* which, when lighted, give the diver the following information:

*
Light emitting diodes.
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1. Low pump current (pump cavitating)

2. Suit water temperature too high [>llOoF (43°C)]

3. Cell temperature below 140°F (60°C)

The control panel also contains two off/on switches — a diver-operated
one for suit circulation, and another one for activation of the elec-
trolyte pump and electronics. Thermistors sense the cell and suit-water
temperatures. The electronic components are housed in & watertight
pressure housing attached to the pump motors. The electronic/electrical
control circuit is shown in Figure 28.

Power for operating the pump motors and electronics is supplied
from three parallel sets of four D-size lithium primary cells connected
in series to provide 10.5 volts and 17 A-hr. The batteries are contained
in watertight housings (Figure 29) that are mounted external to the
heater case.

Safety Considerations

Safety is an inherent characteristic of the heat source; the reaction
produces no toxic substances, and the high reaction temperatures that
might result from overheating are limited to the local boiling point of
seawater. If the temperature of the electrolyte exceeds 140°F, which
could occur if the diver load were to be less than the anticipated 1,000
watts, the electrolyte/suit-water heat exchanger will transfer the
additional heat to the diver circuit and elevate the suit-water tempera-
ture. This immediately activates the temperature control valve, which
causes the hot water to be dumped and cold water to be taken in at the
circulation pump. The incoming cold water creates a load that exceeds
the capacity of the cell, thereby causing a subsequent reduction in
the electrolyte temperature. As an additional thermal safety device, if
an excessive electrolyte temperature were to occur, the extra hydrogen
produced would cause a higher internal case pressure and subsequent
dewatering of the cell.

By adjusting the temperature control valve, the diver can automa-~
tically control the temperature of his suit water at any point within
the 1000F-to-1100F (380-to-439C) range. If the diver sets the valve
below the automatic control range, he can dump any portion or virtually
all of the heater output and circulate cool water through the suit. If
the temperature control valve should fail, the diver could remain
comfortable by periodically connecting and disconnecting couplings in
the suit-water hoses. The only possible hazard from the heater is the
accumulation of an explosive concentration of hydrogen if the heater is
operated in a closed space for a prolonged period of time,

15




Heater Testing

Laboratory bench tests of the heater were conducted to determine
overall performance. Electrolyte temperature, temperatures across the
diver load, and suit-water flowrate were recorded. The diver load was
simulated by immersing a copper tubing heat exchanger into a refriger-
ated bath. The heater’s power output was calculated using the flowrate
and the suit-water temperatures. A typical power curve for an 8-~hour
test is shown in Figure 30. Power output for the 16-kW-hr heater is
shown in Figure 31.

In late May 1975 the heater was first integrated with the heat
distribution garment and thermal protection suit developed by NCSL.
Previous tests with a diver had established a base line power require-
ment and typical skin and rectal temperature trends.

For the integrated test, the heater was carried on the diver’s
back and suit-water flow and electrolyte and suit-water temperatures
were monitored. The diver’s rectal temperature was used as the absolute
indicator of the heater’s effectiveness. During the first 4 hours of
the test, the rectal temperature exhibited the typical slow decline.
However, just after 4 hours, it began to rise (Figure 32) and continued
to rise during the next hour. The test was considered successful since
the temperature rise indicated that the diver was returning to a stable,
normal condition.

Human Considerations

Since the end product of this development effort will be hardware
carried by free~swimming divers, a human factors study was initiated to
determine man/equipment interface problems (the appendix). The objective
of the study was to determine what size and shape the heater could
attain without restricting the free-swimming diver’s mobility. Discus-
sions were held with cognizant tactical diver-oriented personnel, and
then mock-ups of potential diver heating units based on available free-
body space were built and tested. The testing involved diver/swimmer
drag measurements and diver subjective analysis.

The results of the human factors analysis showed that a chest mock=-
up (Figure 33) was preferred over the others tested. The divers favored
the chest=worn unit, because they would prefer to retain the heater and
stay warm in the water if they should have to ditch their breathing
equipment.
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CONCLUSIONS

1. Laboratory and diver tests have proved the feasibility of the
magnesium/seawater reaction for producing heat. Up to 2 kW of power
have been produced continuously for 8-hour periods.

2. A reliable, safe, compact heater can be built that will supply the
diver’s needs in cold water.

3. The specific power output in terms of volume and weight is competi-
tive with past developed and potential future heat sources.

4. Based on the results of laboratory and diver experiments, a neutrally
buoyant, diver-carried, dual-plate heater can be expected to occupy a
volume of approximately 143 in.3/kW-hr (2,340 cm3/kW-hr).

5. Since the requirements for heat will vary in accordance with other
factors, such as depth, water temperature, and diving systems, it is
expected that future heaters will be modular and will have variable
power output and endurance.

6. In the case of the dual-plate heater cell it may be more practical to
use a submersible- or diving-bell-mounted heater and supply the diver
through a hot water umbilical; however, large heat losses in umbilical
hoses could require the heater to be several times the size of that
needed for actual diver use.

7. It is practical to consider using the magnesium/seawater reaction as
an emergency heat source on submersibles or as a come-home heat source
for divers. The system would be activated by charging it with seawater
when heat is required.

8. The final location and configuration of the diver-=carried heater
will be determined by diver needs and breathing apparatus. For one Navy
operation it was found that a chest unit mounted under breathing bags
was most practical in terms of diver comfort and swimability., This unit
could supply 2 kW-hr, would occupy a volume of 2 x 20 x 20 inches

(5 x 15 x 15 cm), and would be neutrally buoyant.

9, For SDV-type* operations it would be practical to consider mounting
the heater in the SDV instead of on the diver. A smaller, shorter
duration heat storage or heat production pack could be carried by the
diver for out of SDV operations.

*
Swimmer Delivery Vehicle, a wet submersible.
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10. The major problem yet to be resolved in the development of a free-
swimming diver-carried dual-plate heater is the venting of hydrogen
produced by the reaction. The vent system must be operable in virtually
any orientation, while preventing excessive electrolyte leakage to sea,
Operation of the vent system is further complicated by the clogging
nature of the Mg(OH)2 reaction by-products.

11. The alloyed magnesium-iron powders offer a viable solution to some
of the undesirable characteristics of the dual-plate cells, including:

(a) Higher specific output than the dual-plate cell
(b) Constant or controlled power output

(c) Attitude insensitive to venting of Hjp

(d) Easily modularized to suit mission requirements

RECOMMENDATIONS

1. A plate~-type (dual or iron-plated) magnesium-iron heater for use in
limited orientation situations, such as mounted on a PTC, SDV or submer-
sible, should be built and tested. This heater could also be used as a
standby emergency heater for the same vehicles.

2., Additional test and evaluation of magnesium-iron powdered alloys,
including other cathodic materials, should be conducted. Based on the
results of these tests, a portable diver-carried heater with constant or
variable power output should be designed, fabricated, and tested.
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Figure 6. Energy density as a function of electrolyte temperature
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Figure 21. Experimental 16-kW-hr diver heater showing the
magnesium=iron cell.
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Figure 25,

Economizer heat exchanger built into case of 8=-kW=-hr
diver heater.
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Figure 29. Battery case (one of three) and a set of lithium primary
batteries.
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Figure 30.

Power curve for 8-kW+~hr heater tests.
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Figure 33. Mock=up of chest=mounted diver heater under Mark 6 UBA ’
breathing bag.




Table 1. Energy Values of Various Reactants

(e = electrical output, t = thermal output,
NEA = no experimental values available.)

Energy Produced

Source (w_h:i?b;
Theoretical Actual
Batteries
Proposed magnesium seawater 1.850 1,800¢
reaction, Mg + H20(Fe) o 400¢
Magnesium-silver chloride 90 70
(torpedo battery) €
Lead-acid (secondary storage battery) 74 150
Silver oxide-zinc (silver cell) 201 50e
Manganese dioxide-zinc (dry cell) 130 25,
Nickel-cadmium 96 15,
Mercury oxide-zinc (merciry cell) 104 40e
Zinc-air (air batteries) 400 800
Sodium-oxygen (battery) 1,010 250,
Magneélum bromide (experimental 250 60
organic cathode) €
Sodium sulfur (experimental) 350 150¢
Lithium chloride (experimental
high-temperature~fused chloride) 1,000 250¢
Lithium fluoride (experimental) 750 100,
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Table 1. Continued

(e = electrical output, t = thermal output,
NEA = no experime.tal values available.)

Energy Produced
Source (W-hr/1b)
Theoretical Actual
Combustion |
Fuel o0il and liquid oxygen 1,370 1,370¢ i
Fuel o0il and 90% hydrogen peroxide 970 970¢
Butane—02 2,100¢
Latent Heat ’
Lithium hydride (sensible heat
and change of state) 250 NEA
Lithium fluoride (sensible heat ,
and change of state) 305 NEA
Boron (sensible heat) 290 NEA
Mono Fuel
Hydrazine hydrate (decomposition) 1,520 NEA
Isotope
Plutonium 238 (8-hour exposure) -— ZOOtd

“Value includes weight of shielding and hardware.

Note: 1 W-hr/1b = 0.45 J/kg.




Table 2. Summary of Reaction Parameters and Their Effects

Parameter

Influence

Effect on the Reaction

Electrode gap

Electrolyte
temperature

Electrolyte pH

Electrolyte
density

Cell internal
resistance

Free transport
of reaction
products

Transport of ions;
solubility of
products

Rate of pre-
cipitation of
Mg(OH)2 near the
anode

Evolution of H
at the cathode

Transport of
reaction products

Decreasing gap increases
reaction rate. Small
gap can cause the
products to clog the

gap which excludes

the electrolyte from
anode surface, thus
reducing the reaction
rate.

Raising temperature
increases reaction
rate; no noticeable
effect on energy
density.

High pH can cause an

Mg (OH) , barrier to form
near anode, which excludes
the electrolyte, thus
reducing the reaction
rate.

Low pH (excess H+ ions)
promotes the formation
of H, at the cathode,
increasing the reaction
rate.

An electrolyte thick-
ened with reaction
products slows the
transport of fresh
electrolyte to the
electrodes, thus
reducing the reaction
rate. Also reduces
removal of products
and increases pH

at anode.
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Table 2. Continued

Parameter

Influence

Effect on the Reaction

Hydrogen gas
volume in
electrolyte

Anode compo-
sition

Cathode
composition

Cell internal
resistance; elec-
trolyte circulation

Reaction product
consistency

Unknown

Gas bubbles displace
electrolyte from con-
tact with the anode,
reducing reaction rate.
(The effect of the gas
is particularly evident
near the top of the
cell where there is the
largest proportion of
gas bubbles. After the
anodes liave reacted for
some time, they are
tapered, with the thick-
est portion being at
the top.)

Pure magnesium produces
a fluffy product that
easily clogs the elec~-
trode gap (decreases
reaction rate). AZ-
31B-0 or AZ-31B-H24
magnesium alloy produces
a product that readily
precipitates (does not
slow reaction rate
except after much pre-
cipitation has accumu-
lated). Other anode
compositions have been
investigated, but AZ31B
was selected on the
basis of availability,
performance, low cost,
and lack of pollutants,
such as Hg.

Iron cathodes produce
a reasonable reaction
rate; other cathodes
produce significantly
lower rates.

continued




Table 2. Continued

Parameter

Influence

Effect on the Reaction

Anode physical
condition

Cathode physical
condition

Electrolyte
composition

Internal cell
resistance

Polarization
(hydrogen
overvoltage)

Internal cell
resistance;
ion mobility

An iron-plated copper
cathode exhibits an
accelerated reaction
rate, probably due

to the decreased
resistance of the
copper substrate.

The area of the anode
exposed to the elect-
rolyte determines the
reaction rate: more
area -~ greater rate.

Rough surface cathode
produces a higher
reaction rate than

a smooth cathode.

High salinity produces
high reaction rates.

IR =T
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APPENDIX
Human Factors Considerations in Self-Contained Diver Heater Design

by F. B. Barrett

BACKGROUND

A limited human factors analysis of self-contained diver heating
systems was conducted to determine man/equipment interface requirements.
The analysis was accomplished primarily through in-water test trials of
several heater mock-ups and through discussions with combat swimmer
personnel and appropriate Navy diving authorities, Equipment compatibil-
ity tests were also conducted during Swimmer Delivery Vehicle (SDV)
operations by personnel using Navy Mark 6 underwater breathing apparatus.

PRELIMINARY CONSIDERATIONS

An analysis of underwater breathing apparatus (UBA) currently in
se by Navy tactical swimmers and probable future configurations was
onducted to determine possible locations for diver heater components.
Ihe major requirement placed on the analysis was to minimize the re-
strictions imposed on the swimmer and his mobility. As a result of this

analysis, three heater mock-ups were fabricated for in-water test and
evaluation (Figures 33, 34, and 35). A brief description of the mock-ups
is contained in Table 7. All of the mock-ups were fabricated from wood
and weighted for neutral buoyancy; the leading edges were faired to
reduce hydrodynamic drag. The chest and wing tank mock-ups were con-
figured to be compatible with the presently used Marl 6 UBA. The chest
unit appeared to be compatible with all known types c¢f Navy UBA's. Scme
UBA's have enclosed back packs that make adaptation of the back pacl
wing tank units very difficult.

A mock~up of the heater control panel was fabricated and is shown
in Figure 36. The basic unit was 2 x 3 x 4 inches (5 x 8 x 10 cm). The
control handle was 2 inches in diameter with pronounced knobs. Small
diameter LEDs were simulated.

TESTS

The chest and wing tank mock-ups were tested in a swimming pool in
conjunction with the Mark 6 UBA., The apparatus shown in Figure 37 was
used to determine the mock-~up drag characteristics. Divers were pulled
through the water at 1l-knot speeds while submerged. Considerable varia-
bility in the results was voted; however, the drag was verified as being
a fraction of 1 pound.
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Two divers swam laps in the swimming pool while submerged. They
were asked to swim at a pace which they could maintain for long-~duration
swims, The objective of the test was to obtain their subjective feelings
of heater interference with surface and underwater swimming, The results
of the swimming test are contained in Table 8. Speed loss was judged to
be noticeable, but not excessive. The divers indicated a preference for
the chest mock-ups although, subjectively, neither mock-up seemed to
interfere with their mobility. They felt that in the chest node they
could retain the diver heater unit in emergencies.

The mock-ups were further tested in conjunction with routine SDV-
type operations. Combat-type divers were required to swim approximately
one-half mile underwater and 100 yards on the surface using the back
pack and chest mock-up heaters. The test results were in the form of
subjective comparison by the divers. Interference with SDV operations
was noted. Also, the divers stated that they would prefer having the
heater mounted directly on a SDV in order to lessen the gear they have
to carry.

RESULTS

1. Noticeable, but not excessive drag, was observed from swimming with
the mock-ups.

2. Divers preferred the chest mock-ups, because it would be possible to
retain the diver heater following ditching of the UBA.

3, Interference with swimming or arm movements with either of the mock-
ups did not appear excessive.

4, Both mock-ups interferred with SDV-type operations,

a. The chest unit resulted in difficulty in bending forward while
seated, thus interferring with instrument reading.

b. Divers could not bend far enough forward wearing the chest unit
to open the flood doors of the SDV.

c. While using the back pack mock-up, it was difficult to reach
the Navy Mark 6 UBA bypass valve and air ON-OFF switch,

5. Divers reported no difficulty in reading the displays. It was quite
simple to operate the controls using thin neoprene gloves; however,
problems could be anticipated using three-fingered mittens.




CONCLUSIONS

1. Additional human-factors-type analyses are required to provide
heater systems that will be compatible with both swimmer and SDV-type
operations.

2, Most divers would prefer having an SDV-mounted heater to lessen gear
requirements. This comment does not take into consideration the physio-
logical requirements of operations in 28°F (-2°C) water. [Many divers
appear to be unaware of the actual problems that result from extended
operations in 28° to BOOF (=2 to =1°C) water.]

3. For diver-heating equipment to be acceptable to fleet units, it must
be as compact, serviceable, and maintenance-~free as possible.

4, Future heater units should be tested in conjunction with newer SDV’s
currently under development.
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Figure 15, Mock~up of b;u‘kpm‘k-mmmtcd diver heatey,
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Table 7. Description of Mocks-ups

L. Predicted
Mock-Up Type Description Capacities ]
Chest 3 in. thick x 12 in. wide x 8 kW-hr
14 in. long; worn under 2 kW for 4 hr
breathing bag
Wing tanks 2 in. x 3-1/2 in. x 25 in., 4 kW-hr é
plus 2 in. x 3-1/2 in. x 10 1 kW for 4 hr ,
in; attaches to outer sides
of gas tanks
Backpack 4-1/8 in. x 6-1/4 in. x 24 8 kW-hr
in.; attaches to back of 2 kW for 4 hr
breathing gas tanks

Note: 1 in. = 2.54 cm.

Table 8. Mock-up Performance Tests in Swimming Pool

) Speed (mph) for — Mean ]
Diver Gear - - Spead Loss ¥
Diver A Diver B
(mph) 4
Mark 6 UBA 1.12 1.48 -
Mark 6 UBA plus 1.08 1.51 0.015
chest heater
unit
Mark 6 UBA plus 1.06 1.37 0.075
wing tank heater
unit

Note: 1 mph = 1.6 km/hr.
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